mnist-keras 发表于 2018-01-06 | 阅读次数: 字数统计: 349 | 阅读时长 ≈ 1 keras 训练卷积神经网络: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566import numpy as npfrom keras.datasets import mnist# 引入卷积模块from keras.models import Sequentialfrom keras.layers import Dense, Dropout, Flattenfrom keras.layers.convolutional import Conv2D, MaxPooling2D# 读入数据(X_train, y_train), (X_test, y_test) = mnist.load_data()print(X_train[0].shape)print(y_train[0])# 图像是 28 * 28 的格式 标签是0-9的数字# 手写黑白字体变成四维张量形式 样本数量 长 宽 1X_train = X_train.reshape(X_train.shape[0], 28, 28, 1).astype('float32')X_test = X_test.reshape(X_test.shape[0], 28, 28, 1).astype('float32')X_train /= 255X_test /= 255def tran_y(y): y_ohe = np.zeros(10) y_ohe[y] = 1 return y_ohey_train_ohe = np.array([tran_y(y_train[i]) for i in range(len(y_train))])y_test_ohe = np.array([tran_y(y_test[i]) for i in range(len(y_test))])model = Sequential()# 第一层卷积 64个过滤器 每个覆盖范围3*3*1 图像四周补0, relu进行非线性变化model.add(Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding='same', input_shape=(28, 28, 1), activation='relu'))model.add(MaxPooling2D(pool_size=(2, 2)))# 设立 dropout 层model.add(Dropout(0.5))model.add(Conv2D(128, kernel_size=(3, 3), strides=(1, 1), padding='same', activation='relu'))model.add(MaxPooling2D(pool_size=(2, 2)))model.add(Dropout(0.5))model.add(Conv2D(256, kernel_size=(3, 3), strides=(1, 1), padding='same', activation='relu'))model.add(MaxPooling2D(pool_size=(2, 2)))model.add(Dropout(0.5))# 当前层节点展平model.add(Flatten())# 构造全连接神经网络层model.add(Dense(128, activation='relu'))model.add(Dense(64, activation='relu'))model.add(Dense(32, activation='relu'))model.add(Dense(10, activation='softmax'))# 损失函数选择交叉熵model.compile(loss='categorical_crossentropy', optimizer='adagrad', metrics=['accuracy'])model.fit(X_train, y_train_ohe, validation_data=(X_test, y_test_ohe), epochs=20, batch_size=128)scores = model.evaluate(X_test, y_test_ohe, verbose=0)