dijkstra

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#!/usr/bin/python
# -*- coding: UTF-8 -*-

from typing import List, Generator
import heapq


class Graph:
def __init__(self, vertex_count: int) -> None:
self.adj = [[] for _ in range(vertex_count)]

def add_edge(self, s: int, t: int, w: int) -> None:
edge = Edge(s, t, w)
self.adj[s].append(edge)

def __len__(self) -> int:
return len(self.adj)


class Vertex:
def __init__(self, v: int, dist: int) -> None:
self.id = v
self.dist = dist

def __gt__(self, other) -> bool:
return self.dist > other.dist

def __repr__(self) -> str:
return str((self.id, self.dist))


class Edge:
def __init__(self, source: int, target: int, weight: int) -> None:
self.s = source
self.t = target
self.w = weight


class VertexPriorityQueue:
def __init__(self) -> None:
self.vertices = []

def get(self) -> Vertex:
return heapq.heappop(self.vertices)

def put(self, v: Vertex) -> None:
self.vertices.append(v)
self.update_priority()

def empty(self) -> bool:
return len(self.vertices) == 0

def update_priority(self) -> None:
heapq.heapify(self.vertices)

def __repr__(self) -> str:
return str(self.vertices)


def dijkstra(g: Graph, s: int, t: int) -> int:
size = len(g)

pq = VertexPriorityQueue() # 节点队列
in_queue = [False] * size # 已入队标记
vertices = [ # 需要随时更新离s的最短距离的节点列表
Vertex(v, float('inf')) for v in range(size)
]
predecessor = [-1] * size # 先驱

vertices[s].dist = 0
pq.put(vertices[s])
in_queue[s] = True

while not pq.empty():
v = pq.get()
if v.id == t:
break
for edge in g.adj[v.id]:
if v.dist + edge.w < vertices[edge.t].dist:
# 当修改了pq中的元素的优先级后:
# 1. 有入队操作:触发了pq的堆化,此后出队可以取到优先级最高的顶点
# 2. 无入队操作:此后出队取到的顶点可能不是优先级最高的,会有bug
# 为确保正确,需要手动更新一次
vertices[edge.t].dist = v.dist + edge.w
predecessor[edge.t] = v.id
pq.update_priority() # 更新堆结构
if not in_queue[edge.t]:
pq.put(vertices[edge.t])
in_queue[edge.t] = True

for n in print_path(s, t, predecessor):
if n == t:
print(t)
else:
print(n, end=' -> ')
return vertices[t].dist


def print_path(s: int, t: int, p: List[int]) -> Generator[int, None, None]:
if t == s:
yield s
else:
yield from print_path(s, p[t], p)
yield t


if __name__ == '__main__':
g = Graph(6)
g.add_edge(0, 1, 10)
g.add_edge(0, 4, 15)
g.add_edge(1, 2, 15)
g.add_edge(1, 3, 2)
g.add_edge(2, 5, 5)
g.add_edge(3, 2, 1)
g.add_edge(3, 5, 12)
g.add_edge(4, 5, 10)
print(dijkstra(g, 0, 5))

# 下面这个用例可以暴露更新队列元素优先级的问题
# g = Graph(4)
# g.add_edge(0, 1, 18)
# g.add_edge(0, 2, 3)
# g.add_edge(2, 1, 1)
# g.add_edge(1, 3, 5)
# g.add_edge(2, 3, 8)
# g.add_edge(0, 3, 15)
# print(dijkstra(g, 0, 3))