中心化的设计思想
中心化的设计思想很简单,按照角色分工 大体上两种
一种是中心节点 另外就是普通节点 如果中心节点出现问题 则集群会崩溃
去中心化的设计
不存在单点故障
完全意义的真正去中心化的分布式系统并不多见。相反,外部开来去中心化单工作机制采用了中心化设计思想的分布式系统正在不断涌出。在这种架构下,集群中的领导是被动态选择出来的,而不是认为预先置顶的,而且集群发声故障的情况下,集群的成员会自发的举行“会议”选举新的“领导”主持工作。最典型的案例就是ZooKeeper及Go语言实现的Etcd
分布式环境的问题有:
- 通信异常:从集中式向分布式演变过程中,必然会引入网络因素,而由于网络本身的不可靠性,因此也引入了额外的问题。分布式系统需要在各个节点之间进行网络通信,因此当网络通信设备故障就会导致无法顺利完成一次网络通信,就算各节点的网络通信正常,但是消息丢失和消息延时也是非常普遍的事情。
- 网络分区(脑裂):网络发生异常情况导致分布式系统中部分节点之间的网络延时不断增大,最终导致组成分布式系统的所有节点,只有部分节点能够正常通行,而另一些节点则不能。我们称这种情况叫做网络分区(脑裂),当网络分区出现时,分布式系统会出现多个局部小集群(多个小集群可能又会产生多个master节点),所以分布式系统要求这些小集群要能独立完成原本需要整个分布式系统才能完成的功能,这就对分布式一致性提出了非常大的挑战。
- 节点故障:节点宕机是分布式环境中的常态,每个节点都有可能会出现宕机或僵死的情况,并且每天都在发生。
- 三态:由于网络不可靠的原因,因此分布式系统的每一次请求,都存在特有的“三态”概念,即:成功,失败与超时。在集中式单机部署中,由于没有网络因素,所以程序的每一次调用都能得到“成功”或者“失败”的响应,但是在分布式系统中,网络不可靠,可能就会出现超时的情况。可能在消息发送时丢失或者在响应过程中丢失,当出现超时情况时,网络通信的发起方是无法确定当前请求是否被成功处理的,所以这也是分布式事务的难点。
基本可用(basically available):
基本可用是指分布式系统在出现不可预知故障的时候,允许损失部分可用性——但请注意,这绝不等价于系统不可用。以下两个就是“基本可用”的典型例子。
响应时间上的损失:正常情况下,一个在线搜索引擎需要在0.5秒之内返回给用户相应的查询结果,但由于出现故障(比如系统部分机房发生断电或断网故障),查询结果的响应时间增加到了1~2秒。
功能上的损失:正常情况下,在一个电子商务网站上进行购物,消费者几乎能够顺利地完成每一笔订单,但是在一些节日大促购物高峰的时候,由于消费者的购物行为激增,为了保护购物系统的稳定性,部分消费者可能会被引导到一个降级页面。
弱状态(soft state)
弱状态也称为软状态,和硬状态相对,是指允许系统中的数据存在中间状态,并认为该中间状态的存在不会影响系统的整体可用性,即允许系统在不同节点的数据副本之间进行数据同步的过程存在延时。
最终一致性(eventual consistency)
最终一致性强调的是系统中所有的数据副本,在经过一段时间的同步后,最终能够达到一个一致的状态。因此,最终一致性的本质是需要系统保证最终数据能够达到一致,而不需要实时保证系统数据的强一致性。
注意:最终一致性是一种特殊的弱一致性:系统能够保证在没有其他新的更新操作的情况下,数据最终一定能够达到一致的状态,因此所有客户端对系统的数据访问都能够获取到最新的值。同时,在没有发生故障的前提下,数据达到一致状态的时间延迟,取决于网络延迟、系统负载和数据复制方案设计等因素。
在实际工程实践中,最终一致性存在以下五类主要变种。
1 因果一致性(Causal consistency)
因果一致性是指,如果进程A在更新完某个数据项后通知了进程B,那么进程B之后对该数据项的访问都应该能够获取到进程A更新后的最新值,并且如果进程B要对该数据项进行更新操作的话,务必基于进程A更新后的最新值,即不能发生丢失更新情况。与此同时,与进程A无因果关系的进程C的数据访问则没有这样的限制。
2 读己之所写(Read your writes)
读己之所写是指,进程A更新一个数据项之后,它自己总是能够访问到更新过的最新值,而不会看到旧值。也就是说,对于单个数据获取者来说,其读取到的数据,一定不会比自己上次写入的值旧。因此,读己之所写也可以看作是一种特殊的因果一致性。
3 会话一致性(Session consistency)
会话一致性将对系统数据的访问过程框定在了一个会话当中:系统能保证在同一个有效的会话中实现“读己之所写”的一致性,也就是说,执行更能操作之后,客户端能够在同一个会话中始终读取到该数据项的最新值。
4 单调读一致性(Monotonic read consistency)
单调读一致性是指如果一个进程从系统中读取出一个数据项的某个值后,那么系统对于该进程后续的任何数据访问都不应该返回更旧的值。
5 单调写一致性(Monotonic write consistency)
单调写一致性是指,一个系统需要能够保证来自同一个进程的写操作被顺序地执行。
事实上,最终一致性并不是只有那些大型分布式系统才涉及的特性,许多现代的关系型数据库都采用了最终一致性模型。在现代关系型数据库中,大多都会采用同步和异步方式来实现主备数据复制技术。1 .在同步方式中,数据的复制过程通常是更新事务的一部分,因此在事务完成后,主备数据库的数据就会达到一致(强一致性)。2. 而在异步方式中,备库的更新往往会存在延时,这取决于事务日志在主备数据库之间传输的时间长短,如果传输时间过长或者甚至在日志传输过程中出现异常导致无法及时将事务应用到备库上,那么很显然,从备库中读取的数据将是旧的,因此就出现了数据不一致的情况。当然,无论是采用多次重试还是人为数据订正,关系型数据库还是能够保证最终数据达到一致——这就是系统提供最终一致性保证的经典案例。
总的来说,BASE理论面向的是大型高可用可扩展的分布式系统,和传统事务的ACID特性是相反的,它完全不同于ACID的强一致性模型,而是提出通过牺牲强一致性来获得可用性,并允许数据在一段时间内是不一致的,但最终达到一致状态。但同时,在实际的分布式场景中,不同业务单元和组件对数据一致性的要求是不同的,因此在具体的分布式系统架构设计过程中,ACID特性与BASE理论往往又会结合在一起使用。